
Y. Wei and P. Royston 801

Appendix

Algorithm 1 Reconstructing survival data (adapted from Guyot et al. [2012])

Require: The data extracted from published survival curves.

Sk: survival percentages as extracted from y axis, k = 1, . . . ,K, where K
is the total number of extracted data points

tk: time from randomization as extracted from x axis

nriski: number of patients at risk at time triski, i = 1, . . . , T , where T is the
number of intervals where the number of patients at risk is reported

triski: time reported at the risk table

Ensure: Sk+1 ≤ Sk for all k to meet the monotonicity constraint.

Set loweri = min{k : tk ≥ triski} and upperi = max{k : tk ≤
triski+1}.

if i < T − 1 and T > 1 then

Step 1. Calculate n̂ci, the number of censored at time [triski, triski+1], by

n̂ci = Sloweri+1
/Sloweri × nriski − nriski+1

Step 2. Distribute n̂ci evenly within [triski, triski+1]. The censored time is
then

ĉtimec = tloweri + c× (tloweri+1
− tloweri)/(n̂ci + 1)

where c = 1, . . . , n̂ci. We can then calculate the number of censored
events, n̂ck, in extracted intervals [tk, tk+1], which is within
[triski, triski+1].

Step 3. Calculate the number of events at tk as

n̂dk = n̂k ×
(
1− Sk/Ŝ

KM
last(k)

)

n̂k is the estimated number at risk at time tk. Ŝ
KM
last(k) is the estimated

survival probability at time tlast(k) with

last(k) =

{
1 if k = 1

k′ otherwise

Note that tk′ ≤ tk, k
′ is such that the latest event occurs at tk′ , and

there are no events in (tk′ , tk). The estimated number of patients

at risk at time tk+1 is then n̂k+1 = n̂k − n̂dk − n̂ck, where k ∈
[loweri, upperi]. Thus, n̂riski+1 = n̂upperi+1.



802Reconstructing time-to-event data from published Kaplan–Meier curves

Step 4. Set ∆t = n̂riski+1 − nriski+1.

if ∆t 6= 0 then

Adjust the estimated number of censored in time interval
[triski, triski+1] by setting

n̂ci = n̂ci +
(
n̂riski+1 − nriski+1

)

We then repeat steps 1–4 until n̂riski+1 = nriski+1.

end if

Step 5. Repeat steps 1–4 until i+ 1 = T .

end if

if i = T or i = 1 and T = 1 then

Step 6. Approximate n̂cT within interval [triskT−1, triskT ] by setting

n̂cT = min

(
tupperT − tlowerT

tupperT−1
− tlower1

×
T−1∑

i=1

n̂ci; nriskT

)

We then run steps 2–3 for the last interval [triskT−1, triskT ].

end if

if the total number of events, D, is not given then

Stop the algorithm.

end if

if the total number of events, D, is given then

Step 7. Compute
∑upperT−1

k=1 n̂dk.

if
∑upperT−1

k=1 n̂dk ≥ D then

Stop the algorithm.

end if

if
∑upperT−1

k=1 n̂dk < D then

Step 8. Adjust the number of censored, n̂cT , by setting

n̂cT = n̂cT +

(
upperT∑

k=1

n̂dk −D

)

Repeat steps 2–3 and steps 7–8 for the last interval.

end if

end if


